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Abstract--The generalized kinematic equation for condensate film thickness is taken into consideration at 
the liquid-vapor interface and is used to investigate the nonlinear stability of film flow down a vertical wall 
in an applied transverse uniform magnetic field. Results show that both the supercritical stability and the 
subcritical instability may occur in film flow. The results also indicate that the flow would be stabilized if 
the mass was transferred into the liquid phase. The supercritical filtered waves are always linearly stable 
with respect to side-band disturbance. The effect of the magnetic field which can be revealed as the 
Hartmanu number, m, is to stabilize the flow. Therefore, the instability could be counteracted by controlling 

the applied magnetic field. 

1. INTRODUCTION 

The instability problem of fluid flow down a vertical 
or an inclined plate are commonly seen in industrial 
applications, e.g. in the finishing of painting, the laser 
cutting process and casting technology. It is known 
that all macroscopic instability is harmful to fluid 
flow. Therefore, it would be highly desirable to know 
the flow configuration and its temporal dependence in 
order to develop suitable conditions under which the 
homogeneous growl:h could be obtained. 

The theory for laminar film condensate flow 
induced by gravity was firstly developed by Nusselt 
[1] (1961), but the stability of a condensate film had 
never been investigated until 1970s. Bankoff [2], Mar- 
shall and Lee [3] and Lin [4] presented the stability 
analysis of condensate flow successively. They showed 
that the critical Reynolds number is small in all prac- 
tical condensation problems, so the film can be 
assumed to be unstable. The condensation process has 
the effect of stabilizing for the film flow. However, the 
mass transfer due to phase change at the interface was 
not considered. 

Unsal and Thomas [5], Spindler [6] and Koca- 
mustafaogullare [7] investigated stability problem in 
a more detailed form. Their results point out that 
condensation has a stabilizing effect but, on the other 
hand, evaporation has a destabilizing effect. Unsal 
and Thomas [8] analyzed the nonlinear stability of 
condensate film flow, but there were some mistakes in 
the report and only ~:he disturbance of the same mode 
was considered. The problem of linear stability of 
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condensate film flow with constant wall heat flux was 
also studied by Marshall and Lee [3] and Spindler [6]. 

The stability of laminar flows in an applied mag- 
netic field has been studied extensively. Chan- 
drasekhar [9] investigated the stability of flow between 
coaxial rotating cylinders with a magnetic field added 
along the axial direction. Stuart [10] studied the stab- 
ility of pressure flow between parallel plates in a par- 
allel magnetic field and Lock [11] studied the problem 
with a magnetic field perpendicular to the direction of 
motion and to the boundary planes. Hsieh [12, 13] 
has studied the case with the magnetic field per- 
pendicular to an inclined plane. It is found from all 
these studies that the presence of magnetic fields tends 
to stabilize the system. In our view, those results of 
previous studies may have expressed some aspects of 
the system but did not give a complete picture. Unsal 
and Thomas [8], Hwang and Weng [14] gave the 
results of film flow down a vertical plane in more 
detail, but the magnetic field was not taken into con- 
sideration. In this paper, we study the finite-amplitude 
stability of a film flow down a vertical wall with phase 
change at the interface and the magnetic field is 
applied perpendicular to it. The method of multiple 
scales is applied to solve the nonlinear generalized 
kinematic equation in a order by order way and obtain 
a secular equation of Ginzburg-Landau type. 
Through the nonlinear analysis, we could realize 
theoretically that the equilibrium finite amplitude, 
which might be the roughness at the surface, could be 
controlled by adjusting the magnetic field. 

2. GENERALIZED KINEMATIC EQUATION 

The governing equations and boundary conditions 
derived below are based on the formulation of ref. 
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NOMENCLATURE 

a ro/ho, dimensionless radius distance 
B0 magnetic field strength 
Cp liquid specific heat 
d dr + ida, complex wave celerity 
9 gravitational acceleration 
h film thickness 
h0 local base flow film thickness 
h* dimensionless thickness 
hf~ latent heat 
K liquid thermal conductivity 
Nd ~2/[1pr2 
W 2 l!3 o-p le 4/3g i /3(1_[1)-u3 ' 

dimensionless surface tension 
P liquid pressure 
Pg vapor pressure 
P* dimensionless pressure 
Pe (Pr Re), local Peclet number 
Pr pCpv/K, Prandtl number 
Re Uoho/v, local Reynolds number 
Re~ critical Reynolds number 
t time 
t* dimensionless time 
T liquid temperature 

T~ vapor saturation temperature 
U0 g(1 -7)ho~/2v, reference velocity 
u, v velocity. 

Greek symbols 
wave number 

[t p g/ p 
~ CpAT/hfg, heat capacity parameter 
~1 dimensionless disturbance film 

thickness 
0 dimensionless temperature 
6 dimensionless disturbance amplitude 
v fluid kinematic velocity 
p liquid density 
pg vapor density 
a surface tension 

liquid stream function 
tp,  dimensionless stream function 
2 disturbance wavelength. 

Subscripts 
r, z, t partial differential with respect to 

subscript. 

[14], but being extended to formulate a generalized 
kinematic equation for the plane in a magnetic field. 
Consider a layer of an incompressible viscous fluid 
with phase change at the interface flowing down a 
vertical plane, as shown in Fig. 1. The governing equa- 
tions are two-dimensional (2D) mass, momentum and 
energy conservation equations of the liquid phase. 
The boundary conditions at wall are taken as the 
nonslip condition for velocity and a constant heat 
flux. The boundary conditions at the liquid-vapor 
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Fig. 1. Physical model and coordinate system. 

interface are considered as the balance of normal and 
tangential stresses, the relation of interfacial energy 
balances and the equality of liquid and saturated 
vapor temperatures. 

Let u* and v* be the components of the velocity in 
x* and y* directions which is along and is per- 
pendicular to the surface of the plate, respectively. A 
constant magnetic field of strength B0 is applied in the 
positive y-direction. Assuming the magnetic Reynolds 
number (Rein = VL6ol~m) to be very small, which is 
the case of the most practical applications, the induced 
magnetic field can be neglected as indicated by Pao 
[15], where V is characteristic velocity of the fluid, L 
is a characteristic length, a0 is the electric conductivity 
and #m is the magnetic permeability of the fluid. The 
pondermotive force has one nonvanishing component 
in the x direction as given in ref. [15] by 
F,. = aoBZu*/p, which is opposite to the flow direc- 
tion. 

We assume all physical properties are constant and 
obtain the equations and boundary conditions as 
follows : 

Ou* ~v* 
0x* + ~ = 0 (1) 

3u* * 0u* 0u* 10P* 
Ot ~ + u  ~ + V * ~ y ,  pox* 

@2u* 02u*~ ~oB~ou * + 
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By* Or* * By* 18P* 

St* + u * - -  = - -  By* + v ~ : ~  p By* 

[82v * 82v*~ 
+ V ~ x .  z + BY*2/ (3) 

8T 8T 8T  K ( 82T 82T *'] 
8 t ~ + u* ~x ,  + V * ~y , = + p C~ \ ~x . 2 + 8 y*~ J 

By* 

(4) 

(S) u* =0, v*=0, kST Y* 8y ~ = q at = 0 

, 8 u * ;  18 *vv 
P + 2 p V ~ x , [ l + l ~ x ,  ) ) [ 1 - \ S x * / /  

82h* (i[-~ (~h*~ 2x~-3/2 
+ .  8x,~ \~* )  ) 

+ K2h,gp ~7 ' ( 7 - 1 ) ( O ~ *  ~xx*~x*jOh*'T*~ 2 

x 1+ \c~x*] // = eg (6) 

8u* 8v* 8h*c?u* / / S h * \  2 \ 1 
+ ~X* + 4 ~ ~ X * )  - -1 )  = 0  (7) 

8h* O T \  /Sh* ,8h*  
8 ~  ~-x , ) - -ph fg~  +u 0~,--v*)=0 

( 8 )  

T=T~ at y*=h*. (9) 

We introduce the slream function ~* which is defined 
as 

u* = aO* v* - 86* 
By*' ax* 

and the following dimensionless quantities : 

O* 
Uoho 

g (1 -7 )h  .2 
Uo*- 

2v 

2~h* 
2 

P _ (P*-- I ' * )  
pU .2 

h* 
h =  

ho 

K(T- -  ]%) 
O-- - -  qh* 

( x , y , t )  = . Z~ ' *' 
t o ho * /I \ " o  

hoUo 
R e -  ,p 

_ c p a r  
hfg 

N d =  ~2 
7 Pr 2 

Pr - pvCp 
K 

Pe = Pr" Re 

m =  (C%B2h*2~ 1~2, theHartmannnumber.  
\ pv / 

Then, equations (1)-(9) can be transformed into 
the following dimensionless form 

~byyy- m 2 ~y = - 2 + ~Re(Px + ~Pyt 

+O,O~.-O.O..)-~20x.~. (1o) 

p,, = -¢zRe l~/x)T"[-0(2(ff/yl//xx 
--OxO~:y'Jf-~llxt) -O~3Re 1l// ....... (11) 

Oyv = ocPe(OyO~-~bxO,,+O,)-~20~.~, (12) 

80 
O = O x = O y = O  ~yy=l  at y = O  (13) 

P+2~  Re- tOx)( l  + e2h2)(1 - - ~ 2 h 2 ) -  l 

+2~2 WRe-S/3hx,~(l +~2h2 ) 3/2 
+ (7 -- 1)Na Re 2 (Oy- ~2h~0~)2 

x( l+~Zh2)  ' = 0  (14) 

0., = ~2~xx +4~:~, .~hA1-~h~)- '  (15) 

Re ~/3 ~ (Oy - ot 2 hxO,) - o~Pe(ht + tpyhx + ~Ox) = 0 

(16) 

0 = 0  at y = h .  (17) 

It is noted that equation (17) which is derived from 
the energy balance, will be used to determine the time 
evolution of the film thickness, and we call it the 
generalized kinematic condition. 

Since the long wavelength (small wavenumber ~) 
modes are the most unstable ones for film flow, we 
expand ~, P and 0 in the following form : 

q, = ~o + ~,  + ' " , ]  
[ 

P P°+~zPI + "" "'l (18) 
/ 

0 00+~0~ + "",  J 

The above expression is substituted into equations 
(10)-(17), and solved order by order. The zeroth and 
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first order solutions are given as follows : 

Zeroth order : 

2 2 
~b 0 = m3 tanh (mh) cosh (my) - ~ sinh (my) 

2 2 
+ ~ y - -  m3 tanh (mh) 

Po = - 2 0 : 2 W R e  5/3 h~x 

0 o = y - h .  

First order : 

~91 = Re{r1 cosh (my) + r2 sinh (my) + r3y cosh (my) 

+ r4y sinh (my) + rsy + r6 } 

- 2Re- 1 hx sech 2 (mh) 
P1 = [sinh (my) - sinh (mh)] 

m 

O~ = Pe I -  2 2 ~ t a n h  (mh)h- hx sinh (my) 

2 l h  2 + ~ hx cosh (my) - - -  m2 xY 

2 
m 4 h x sech 2 (mh) cosh (my) 

y2 
-~h ty  + ~ h~ sech 2 (mh) l 2 

2 
+ ~7  tanh (mh)y 2& 

2 
m 3 hh~ tanh (mh) +½h, h 2 

+ l~h2hxtanh 2 (mh)] 
m 2 

The zeroth- and first-order solutions are then sub- 
stituted into equation (16) and h,  which appears in 
the first-order solution of (16), can be eliminated. This 
yields the following nonlinear generalized kinematic 
equation, which is simpler to handle : 

ht + X(h) q- A (h)hx + B(h)hx~ + C(h)h ..... 

+D(h)h2+E(h)hx h .... = 0 (19) 

where 

X(h) - Ret/3~ Re2/3~2 h 
o~ P e + - ~ - e  

A(h) = ~ 2  tanh 2 (mh) + ~ Re 1/3 

2 2 
x ( - ~ s e c h ( m h ) t a n h ( m h ) - ~ t a n h ( m h ) )  

+ ~ Re 1/3 ( -  4 tanh (mh) 
Pr ~, m ~ 

2 
-4- ~ sech (mh) tanh (mh) 

1 h 4 -- 3m 3 sech 2 (mh) tanh (rnh) + ~ sech (mh) 

_ 2hm 2 sech 2 (mh)tanh 2 (mh)) 

B(h) = ~ Re ~ sech 2 (mh) tanh 2 (mh) 

4h 
+ ~ tanh (mh) sech 2 (mh) 

+ 2h sech4m5 (mh) tanh (mh)) 

2 3 2,3 2 3 2,3 C(h) = ~ c~ ~Re-  , h -  ~ cc ~Re-  ' tanh (mh) 
m" 

2~Re2/3 ~2 h ~ Re 1/3 
D(h) - Pe Pe 

/ 4 
+ ot Re ~m7 tanh (mh) sech (mh) 

+ 4 h  sech 4 (mh) 
m 4 

8h 
- - -  tanh:  (mh) sech 2 (mh) 

m 4 

12 
+ ~ sech 2 (mh) tanh 3 (mh) 

_ 1 0  sech 4 (mh) tanh (mh) 
m 5 

- 8h sech4 (mh) tan2h (mh) 
m 4 

+ 2h sech6m 4 (mh)) 

E(h) tanh2 (mh) 2~3~ Re->'3. 
m 2 

3. STABILITY ANALYSIS 

The nondimensional  film thickness for the per- 
turbed state may be expanded in the following form : 

h = 1 +,~ (20) 

where r/is the perturbation of the thickness. 
Substituting equations (20) into equation (19), 

keeping terms up to O (r/3), leads to the evolution of 
t/: 
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ill + Xq + Aq~ + Br~'x~ + C?] . . . .  

FX" X" 
+ D?]2 + Erlxq=x= - LTe+- ¢ 

a" ', B" \ 

/ C" ", 
+ [ C ' ~ +  T ~  ~ )?] ...... + ( B + B ' ~ ) ~  

( E +  E'?])q~?]~.~] + 0(?/4 ) + 
J 

(21) 

where the value of X, A and their derivations are 
evaluated at h = 1. 

For  the linear stability analysis, we neglect the non- 
linear part of (21) and obtain the linearized equation 

O~ ~?] 02/'] C ~4~ = 0. (22) 

Assuming the normal mode solution to be 

~l = F e x p [ i ( x - d t ) ] + F e x p [ - i ( x - d t ) ]  (23) 

the complex wave celerity corresponding to the linear 
stability problem is given by 

d = dr + id~ = A + i ( B -  C -  X') .  (24) 

It is noted that, from the expression for the wave 
speed dr, long waves in a liquid film travel at approxi- 
mately twice the :speed of the unperturbed surface. 
Also di = 0 gives the neutral stability curve. 

For the nonlinear stability analysis, we use the 
method of multiple scales, according to 

a t + N + g f f t {  +e2at2 '  Ox * ~ x + e ~ x ,  ' 

?](0~, X, XI, t, t l ,  t2) = /~1 "}- 82r]2 "~E3713, 

where e is a small parameter, then equation (21) 
becomes 

(L0 +eLl  "1"- g2L2)(t¢?]l -~-e2~2 "~/~3~3 ) = - - g 2 N 2  -/33N3, 

where 

(25) 

~3 O O 2 O 4 

Lo =?7 +X+ATx+B77    +C 

0 +A O + 2 D ~  x ~3 
L1 = ~ 1  ~ X  1 {~X I 

a 3 d 

+ 4 ~  0x 3 Ox~ 

0 B a2 03 O 
L2 =~72 q- ~xl2 +6C~5x3 OX l 

X tt 
2 t Nz = ~ t l l  + A ?]l~2--}-C'ql~]lxxx 

and 

+ C'rh ?]l . . . .  + Drl2x + Etl l:,th:x~ 

X tt 

N 3 = X"r]l?] 2 + --r]~ q-A'(?]lr/2x 
6 

A" 
+ ?]lqlXl +rhxrh) + ~ -  ?]~ql~ 

+ D'(t/lxxt/2 q-t/l q2xx +2th)  

B" 
+ ~ -  r/2~/~t,xx + C'(q . . . .  q2 

+rhq2 ..... ~ + 4th rh ..... ,) 

C" 
+ ~-q~rh . . . .  + D(2rhxr/zx 

+ 2~hx thx) + D" rh tl2x 

q- E ( q l x x x t l 2 x  -'}- q l x xx~ l x  I 

"}-tllx?]xxx t -k rllxrl2xxx)"}- E '  rll ?]lx~lxxx.  

Equation (25) is then solved order by order : The O 
(e) equation is Loql = 0, its solution is of the form 

rh = F ( x ~ , t , , t 2 ) e x p [ i ( x - d r t ) ] + C ' C "  (26) 

then the solution of qz and the secular condition for 
O (e 3) are 

?]2 = C, F 2 e x p [ 2 i ( x - d t ) ] + C  "C" (27) 

and 

a r  D a~r 
~2 + ~ ~x2 - e - 2 d i F + ( E ,  + iF , )  F z F = O  

(28) 

respectively, where 

C 1 = C l r + i C l i  = ( 1 6 C - 4 B + X )  -1 

X "  1 

D1 = B - 6 C  

- -  ~ "  3 . 1 , i i El = ~ - - -  + i C  - i D  - E  - A  Cn 

+ ( X ' -  5B '+  1 7 C ' + 4 D -  10E)Clr, 

A" 
F 1 = ~ + A ' C l r + (  X ' - 5 B "  

+ 1 7 C ' + 4 D -  10E)Cu. 

Equation (28) can be used to study the nonlinear 
behavior of film flow. For  a filtered wave, there is no 
spatial modulation and the diffusion term in equation 
(28) vanishes. The solution of this equation may be 
written as 
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F~ = aexp ( -  ibt2). (29) 

Substituting equation (29) into equation (28), neglect- 
ing the second term, we obtain the following results : 

= ( d i ' ~  1:2 
~a \ ~ ]  (30) 

and 

(di) s2b = FI ~'1 ' (31) 

We know from equation (30) that, in the linear 
unstable region (d~ > 0) the condition for the existence 
of a supercritical wave is E1 > 0 and 2 e a is just  the 
final amplitude. On the other hand, in the linear stable 
region (d~ < 0) if Et < 0, then the film flow has the 
behavior of subcritical instability and 2ea is the thresh- 
old amplitude. 

4. RESULTS AND DISCUSSIONS 

The linear stability analysis yields the neutral stab- 
ility curve which is determined by c~d~ = 0 and sep- 
arates the ~-Re plane into two regions: the linear 
stable region where small disturbances decay with 
time; and the linearly unstable region where small 
disturbances grow with time. For the purpose of 
numerical calculations, the values of the dimensionless 
parameters are fixed as W =  1000, ~ =0 .1  and 
Pr = 2.62. The results are, in general, in agreement 
with the results of previous studies (Spindler [6]; 
Hwang and Weng [14]) when m = 0. 

Figure 2 shows the neutral stability curve for con- 
densate film flow with different Har tmann  numbers. 
The stable region will be expanded when m increases 
further. 

The nonlinear stability analysis is used to study 
whether the finite-amplitude disturbance in the linear 
stable region will cause instability (subcritical insta- 
bility), and to study whether the subsequent nonlinear 
evolution of disturbance in the linear unstable region 
will re-develop into a new equilibrium state with a 
finite amplitude (supercritical stability) or grow to be 
unstable. By inspection of equation (30), one can find 
that the negative value of E1 will make the system 
unstable. Such kinds of instability in the linear stable 
region are called subcritical instability; i.e. the dis- 
turbance amplitude is larger than the threshold ampli- 
tude, then the amplitude will increase although the 
prediction by linear theory is stable. On the other 
hand, such instability in the unstable region will cause 
the system to reach an explosive state which could be 
considered as the solution of a complex pattern. 

The hatched area in Fig. 2 near the neutral stability 
curve shows that both subcritical instability (d~ > 
0, El < 0) and the explosive solution (d i<  0, E1 < 0) 
are possible for the film flow, the nonlinear critical 
Reynolds number  Rec is important.  If Re < Rec the 
film flow is nonlinear stable ; otherwise, the film flow 

0.18 
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o~ 

0.06 

0.00 
0.00 3.60 6.00 9.60 12.00 

Re 

Fig. 2(a). Stability curve of condensate film flow: m = 0. 
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Fig. 2(b). Stability curve of condensate film flow: m = 0.2. 
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o.oo ~.6o 6.6o 9.60 12.oo 

Re 

Fig. 2(c). Stability curve of condensate film flow: m = 0.5. 

is nonlinear unstable near the region of upper neu- 
tral curve. As shown in Fig. 2, the increment of the 
Har tmann  number  will increase the Rec, that is, the 
added magnetic field will stabilize the flow. 

It could be shown from the nonlinear instability 
analysis that the system will be unstable if the initial 
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1.00 

0.90 

2ca 

0.80 

0.70 
0.15 

~ ~ _ ~ _ =  0.5 

~ . _ . ~  m = 0.2 J 

m = 0 

0.~6 0 . 1 7 .  

fx 

Fig, 3. Threshold amplitude in the subcritical unstable region 
with different Hartmann number. 

finite amplitude disturbance is greater than the 
threshold amplitude. Figure 3 displays the 
threshold amplitude in the subcritical unstable region 
for different Hat:mann numbers with the value of 
Re = 10. The decrease of the Hartmann number will 
lower the threshold amplitude ; that is, it will be more 
stable. 

In the linearly unstable region, the linear ampli- 
fication rate is positive, while the nonlinear ampli- 
fication rate is negative. Therefore, the linearly infini- 
tesimal disturbance in the unstable region will not 
grow infinitely, but rather reaches an equilibrium 
amplitude that is obtained from equation (30). Figure 
4 displays the s upercritical stable amplitude for 
different Hartmann numbers with the value of 
Re = 10. It is found that the increase of the Hartmann 
number will lower the threshold amplitude, and there- 
fore the flow will be more stable. 

From the above discussion, the effect of magnetic 
field will strongly affect the stability characteristics 
of film flow. The increase in Hartmann number will 

0.80 

2ea 0.60 

0.40 I 
0.110 0.115 0.120 

Fig. 4. Threshold amplitude in the supercritical stable region 
with different Hartmann number. 

increase the stability of film flow. Because the mag- 
netic force is applied in the opposite direction to the 
fluid flow it will cause the flow to be retarded. 

5. CONCLUSIONS 

The nonlinear instability of a magnetohydro- 
dynamic film flow with phase change at the interface 
is investigated by the method of perturbation, 
and a nonlinear generalized kinematic equation is 
obtained. The phenomena for the magnetohydro- 
dynamic interaction between fluid flow and magnetic 
field is described in this study. 

Linear stability analysis is studied first. The critical 
Reynolds number could be obtained. The increase of 
Hartmann number will increase the critical Reynolds 
number, and so the flow will be more stable. The 
linear stability analysis only gives the statements of 
qualitative tendency about the dynamic behavior of 
film flow, it could not give any statement about the 
finite amplitude of the disturbed surface, which is 
more important for the determination of the rough- 
ness at the surface. The stationary finite amplitude 
could be obtained only from the nonlinear stability 
analysis of the flow. 

The method of multiple scale is used for the non- 
linear stability analysis. It indicates that there exists 
supercritical stability in the linear unstable region, 
and infinitesimal disturbance will develop into a new 
equilibrium finite amplitude. However, there exists 
subcritical instability in the linear stable region. The 
increase of Hartmann number will increase the critical 
amplitude in the subcritical unstable region and will 
reduce the amplitude of supercritical stable wave. 
Therefore, the effect of magnetic force will strongly 
affect the stability characteristics of film flow. The 
increase in Hartmann number will increase the stab- 
ility of film flow. 

To stabilize the fluid flow by applying a magnetic 
field has the advantage for neither electrical nor mech- 
anical contacts with the fluid, which could be of par- 
ticular importance to the high temperature molten 
flows in the cases of laser cutting or semiconductor 
crystal growth. It would be of use in actively con- 
trolling a technological process based on the magnetic 
field, for example, in laser cutting process, where the 
wave surface is present globally at the molten inter- 
face. By applying a magnetic field to counteract the 
inertia force, the instability could be impeded and the 
smooth flow maintained. Therefore, it can be con- 
cluded that increasing the stability of film flow by 
controlling magnetic field, a film flow with optimum 
conditions could be obtained. 
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